ヴィチ・ビジョン社シャフト部品専用立形光学測定機による不良削減

1. 不良ワークの要因と対策:

ワーク素材コスト、加工に費やした付帯設備の稼働時間、そして人件費 — 不良品は多くの損失を招く。

品質管理の重要性が製造現場の永年のテーマの1つとなる所以である。受け入れ検査の厳格化、購入する切削工具の管理、さらには、ユーザー自身で工作機械の誤差を特定し補正する流れもある。この精度管理は、レーザー干渉計による単純なピッチ補正だけに留まらず、より高い次元で誤差を改善する空間補正の運用に移行している。工作機械メーカーによる納入据え付け直後に、ユーザーがエタロン社製空間誤差補正システム(写真1)で精度を改善している事例もある(写真2)。

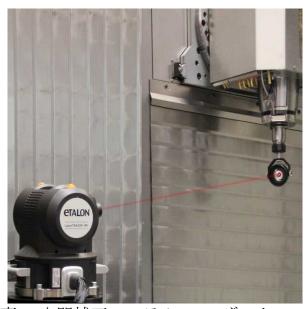


写真 1. 空間補正システム レーザートレーサ

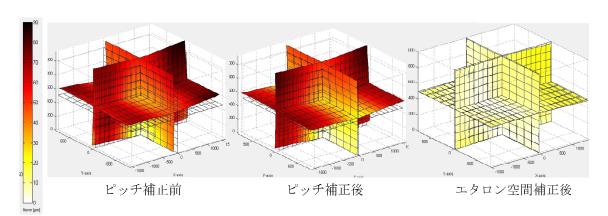


写真 2. 空間的な補正による精度改善

不良の要因には加工機となる工作機械の誤差に加え、ブランク及び切削工具の誤差、これらの取り付け誤差、現場の環境などがある。サプライヤに依存せざるを得ない機械、工具、ワーク素材を機械ユーザーが完全に管理することは容易ではない。ワークを加工して生じる誤差は様々な誤差要因の累積した結果である。簡単且つ確実に不良を抑制する方法は、加工したワークを迅速に測定し、誤差量を必要に応じて補正量として加工機にフィードバックすることである。

ヴィチ・ビジョン社シャフト部品専用立形光学測定機 MTL シリーズ(写真3)は年間 200 台以上を航空部品、自動車部品、バルブ部品(写真4)向けに納入され、現場測定から不良削減に貢献している。

写真3.加工機の横に設置されるMTL

写真 4. 測定対象となるシャフト部品

2. 不良削減を考える測定へのアプローチ

現場測定で不良を削減するための必要要素

- □ 製造現場の環境適応
- 簡単、短時間測定
- □ 信頼のおける測定データ
- □ ワンチャック測定
- □ 測定データの有効活用

2.1 製造現場での利用に適しているか

工場の場所、基礎、季節、温度管理により条件は様々であるが、環境温度は一日を通して不安定なことが多い。MTL シリーズは環境適合設計がされており、製造現場の温度変化に対応するビルトイン・マスターゲージは、都度同時に測定されデータ補正を担う。また、熱源となる配電盤と測定エリアを分断するエアーカーテン(写真5)は装置自体の熱変位を抑制する。

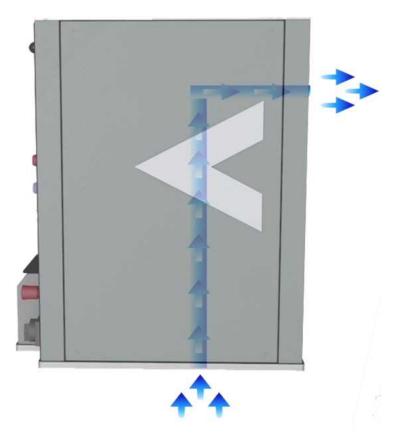


写真5.エアーカーテン冷却(横からのイメージ)

2.2 簡単、短時間測定が可能か

長尺ワークの簡単ローディングを追求した立形構造をとり、ワークは下部をチャックやセンタに合わせて、上部から可動式テールストック(写真 6)を降ろし固定する。測定はパソコン上の指示によらず、ボタン操作で開始するよう工夫されている。さらに高速測定に適したカメラ(写真 7)を搭載し、測定データ取得まで、僅か 30 秒である。

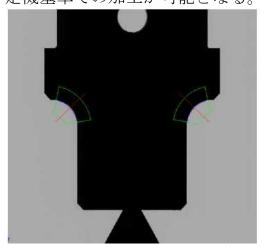

写真 6. 移動型テールストック

写真 7. 上下移動式カメラ

2.3信頼のおける測定データであるか

定期的に校正されたゲージを利用し、測定機の精度を確認することができる。バリ排除機能を利用した自動測定(図 8)は、オペレータのスキルを問わず信頼性のあるデータを短時間で作成、加工機へフィードバックし、測定機基準での加工が可能となる。

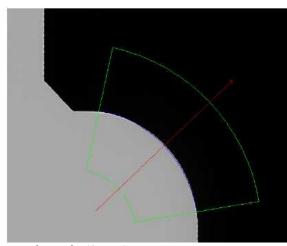


図 8. 円弧ターゲット内の自動認識

2.4 ワンチャックで必要な測定項目を測定できるか

投影機、マイクロメータ、真円度測定機、その他専用測定装置をこの一台に置き換えれば、測定機間の誤差や段取りが解消され、大幅に測定時間が短縮される。上下移動式カメラによる高速スキャンは、径、長さ、角度、円弧、カム・ネジ形状、真円度、円筒度、プロファイルの DXF データ比較等、様々な静的、動的測定要求に応える(図 9)。

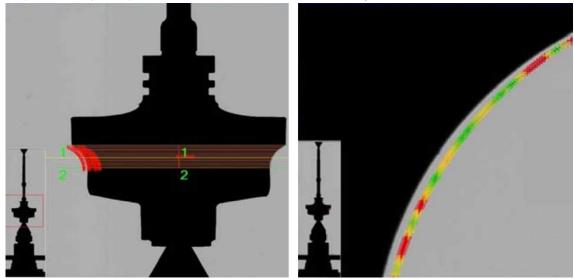
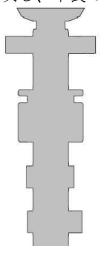



図 9. ターボホイールの DXF 比較測定イメージ

2.5 測定したデータを有効活用できるか

測定データは履歴として記録され、統計的な精度管理、測定レポートとして出力される。測定レポートは社内データだけでなく、顧客からのクレーム対処をも担う。各測定箇所の公差許容値に対する測定結果をリアルタイムで緑、黄、赤で色分け表示(図 10)をさせ、加工プログラムに迅速に反映し、不良の発生を防ぐことができる。

GRAP.	Name	Nominal	Measure	Deviation	LOWER TOL.	UPPER TOL.
	09 - CAM E1 ANG. TO REF	293.2000	293.1892	-0.0108	0.3300	0.3300
	10 - CAM E1 LIFT	5.2277	5.2218	-0.0059	0.0400	0.0400
	11 - CAM E1 BASIC RADIUS	14.5000	14.5116	0.0116	0.0150	0.0150
	12 - CAM E1 + DEV.MC	0.0000	0.0122	0.0122	0.0400	0.0400
	13 - CAM E1 - DEV.MC	0.0000	-0.0120	-0.0120	0.0400	0.0400
	14 - CAM E1 + DEV.PC	0.0000	0.0080	0.0080	0.0400	0.040
	15 - CAM E1 - DEV.PC	0.0000	-0.0085	-0.0085	0.0400	0.040
	16 - CAM E1 + DEV.AC	0.0000	0.0131	0.0131	0.0400	0.040
	17 - CAM E1 - DEV.AC	0.0000	-0.0101	-0.0101	0.0400	0.040
	18 - CAM E1 + VEL .MC	0.0000	0.0033	0.0033	0.0100	0.010
	19 - CAM E1 - VEL .MC	0.0000	-0.0050	-0.0050	0.0100	0.010
	20 - CAM E1 + VEL .PC	0.0000	0.0013	0.0013	0.0100	0.010
	21 - CAM E1 - VEL .PC	0.0000	-0.0041	-0.0041	0.0100	0.010
	22 - CAM E1 + VEL .AC	0.0000	0.0016	0.0016	0.0100	0.010
	23 - CAM E1 - VEL .AC	0.0000	-0.0053	-0.0053	0.0100	0.010
	24 - CAM E1 + ACC.MC	0.0000	0.0049	0.0049	0.0100	0.010
	25 - CAM E1 - ACC.MC	0.0000	-0.0086	-0.0086	0.0100	0.010
	26 - CAM E1 + ACC.PC	0.0000	0.0079	0.0079	0.0100	0.010
	27 - CAM E1 - ACC.PC	0.0000	-0.0068	-0.0068	0.0100	0.010
	28 - CAM E1 + ACC.AC	0.0000	0.0124	0.0124	0.0100	0.010
(1)	29 - CAM E1 - ACC.AC	0.0000	-0.0118	-0.0118	0.0100	0.010

図 10. 測定データのリアルタイム統計管理

以上